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Abstract—Deploying road-side WiFi access points has made possible internet access in a vehicle, nevertheless it is challenging to

maintain client performance at vehicular speed especially when multiple mobile users exist. This paper considers the association

control problem for vehicular WiFi access in the Drive-thru Internet scenario. In particular, we aim to improve the efficiency and fairness

for all users. We design efficient algorithms to achieve these objectives through several techniques including approximation. Our

simulation results demonstrate that our algorithms can achieve significantly better performance than conventional approaches.
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1 INTRODUCTION

IMPROVEMENTS in wireless technology have made it possible
to deploy wireless networks spanning an entire metropo-

litan area. The availability of anywhere, anytime, wireless
connectivity will create new categories of users. One such
category is called “Drive-thru Internet” [1], which provides
wireless access to users in moving vehicles through road-side
deployed APs. These vehicular users encounter unique
challenges not faced by conventional indoor users, such as
dynamically changing network structure of AP-user pairing
and contentions among mobile users. Unlike a wireless
network comprising of static or slow moving users, vehicular
users are continuously moving at high speeds, making
existing AP selection and handoff algorithms unsuitable.

In order to achieve reasonable efficiency among multiple
vehicular users for the above Drive-thru Internet scenario,
several problems should be considered, e.g., rate adapta-
tion and association control. Association control defines,
while multiple users are driving along the road, how to
intelligently associate vehicular users to APs and when to
appropriately conduct handoffs for users to improve the
overall system performance. Compared with rate adapta-
tion [2], which adapts the modulation and coding scheme
according to the quality of the radio channel, association
control considers the entire network from a macrolevel
perspective, which shows how to optimize system perfor-
mance from a higher level viewpoint. We notice that, albeit
some recent work on association control for static networks,

there is little work on how to manage AP association in this
type of “Vehicular Networks”. We believe that a thorough
theoretical study on this problem is highly necessary for the
future deployment of vehicular networks. Some pitfalls can
be avoided in real deployment if we have a better
understanding first.

This paper aims to define a theoretical framework to
analyze the performance of a vehicular network in the Drive-
thru Internet scenario, in particular to investigate association
control schemes. Considering both the long-term efficiency
and fairness metrics, we propose optimized schemes to
associate mobile users with APs, and approximation algo-
rithms to reduce computation complexity of calculating
optimal solutions. To the best of our knowledge, this is the
first theoretical work that investigates the optimization
problem for association control in vehicular networks. The
contributions of this paper are summarized as follows:

1. Since the association solutions are updated fre-
quently while the users are driving along the roads,
this paper is concerned about the long-term perfor-
mance in terms of efficiency and fairness, and
proposes novel algorithms to achieve these long-
term objectives.

2. We propose a theoretical framework for association
control over vehicular networks. For the efficiency
metric, the problem is transformed into an optimiza-
tion problem for each snapshot over the long-term
service duration. For the fairness metric, we,
respectively, consider the optimization solutions
for proportional fairness and max-min fairness.

3. When the involved number of mobile users and APs
along the road is rather large, to reduce the
computation complexity, we propose an approxima-
tion algorithm to break the large contention group
into smaller subgroups, achieving a trade-off be-
tween accuracy and computation complexity.

The rest of the paper is organized as follows: We briefly
present related work in Section 2. We define the perfor-
mance metrics and introduce our model and assumptions in
Section 3. We illustrate our overall optimization and
snapshot solutions in Section 4, respectively, for efficiency
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and fairness. We show some major simulation results in
Section 5, and we conclude the paper in Section 6.

2 RELATED WORK

Association control and scheduling solutions for Wireless
LANs (WLAN) have been intensely studied, mainly
targeting the efficiency and fairness metrics. Tassiulas
and Sarkar consider the max-min fair allocation of
bandwidth in wireless ad hoc networks [3]. Bejerano
et al. present an efficient solution to determine the user-
AP association for the max-min fair bandwidth allocation
[4]. Li et al. consider proportional fairness for WLANs [5].
Internet access with vehicular speeds in the IEEE 802.11
networks have been studied in recent research works.
Bychkovsky et al. study the case for vehicular clients to
connect to open-access residential wireless 802.11 access
points in Boston [6], [7]. Giannoulis et al. address the
problem of maintaining client performance at vehicular
speeds within city-wide multihop 802.11 networks [8]. Ott
and Kutscher report on measurements for the use of 802.11
networks in the Drive-thru Internet scenario [1]. Mahajan
et al. deploy a modest-size test bed and analyze the
fundamental characteristics of WiFi-based connectivity
between base stations and vehicles in urban settings [9].
Hadaller et al. show that by exploiting wireless conditions,
vehicular opportunistic access can be greatly improved
[10]. Navda et al. investigate the use of directional
antennas and beam steering techniques to improve
performance of 802.11 links in the context of communica-
tion between a moving vehicle and roadside APs [11]. Kim
et al. present novel association control algorithms that
minimize the frequency of handoffs occurred to mobile
devices [12]. Deshpande et al. exploit historical information
to develop new handoff and data transfer strategies for
improved vehicular WiFi access [13]. Wu et al. have
developed a fast handoff scheme called Proactive Scan to
reduce the handoff delay [14]. In the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.17, the related works are introduced
in a more comprehensive approach.

3 PERFORMANCE MODELS AND METRICS

3.1 Models and Assumptions

In the Drive-thru Internet scenario, vehicular users are driving
through a region covered with multiple roads, and APs are
deployed along the roads nonuniformly by the service
provider. Each AP has a limited coverage range and it can
only serve users in its coverage area. We assume a careful
frequency planning where interfering APs are assigned to
orthogonal channels so that adjacent APs can fully utilize
their bandwidth without causing interference to each other.
Conventionally, each user on the roads may have one or
more candidate APs to associate with at any time, and each
time the user can only associate with exactly one AP.
Furthermore, contentions for transmission may exist among
users if they associate with the same AP. If a large number of
users associate with the same AP, their allocated bandwidths
will be greatly reduced. We assume that different users have
various velocities (including speeds and directions) which

may vary over the time. Thus while users are driving along
the roads, at different time instants and positions, they may
be contending with different users for bandwidth from
different APs. Each user associates with the first AP after first
entering the Wi-Fi deployment area, then goes through a
series of handoffs among different APs while driving along
the roads, and disconnects at the last associated AP before
leaving the Wi-Fi deployment area. In this paper, we seek a
series of optimized association solutions based on under-
lying technologies [13], [14] to conduct fast handoffs, which
can limit the handoff delay within several milliseconds, so
that the handoffs can be performed at a small cost.

We denote the set of APs as A indexed by i ¼ 1; . . . ;m
and denote the set of users as U indexed by j ¼ 1; . . . ; n.
We consider association control over the time interval
½0; T �. For example, 0 and T may, respectively, denote 0 :
00 and 24 : 00 time points of every day. For each AP-user
pair ði; jÞ, we assume that the effective bit rate ri;jðtÞ of
the link between i and j at time t is known. The effective
bit rate is measured over a fairly long time period and
also takes into account the overhead of retransmissions
due to reception errors. We use bjðtÞ to denote the
bandwidth allocated to user j at time t. Both bit rate and
bandwidth can be measured in bits per second (bit/s).
For bandwidth allocation inside each AP, we use time-
based fairness for scheduling. Once an AP is associated
with some users, each user is assigned an equal-sized
time slot regardless its effective bit rate, and is supposed
to use all the allocated bandwidth. Thus, if n0 users are
associated with AP i at time t, then the bandwidth
allocated to user j is bjðtÞ ¼ ri;jðtÞ=n0.

For the effective bit rate setting in the Drive-thru Internet
scenario, we adopt the model proposed in [1]. Fig. 1 depicts
three different connectivity phases with respect to effective
bit rate and relative distance between the user and AP. The
entry phase and exit phase provide very weak connectivity,
only the production phase provides a window of useful
connectivity. As the connection is built between a user and
an AP, it will maintain a constant bit rate in the production
phase, which mainly depends on the AP’s signal strength
and the user’s driving speed. Conventionally the faster the
user’s speed is, the lower bit rate the user can achieve. The
bit rate can basically keep fixed while the user’s speed does
not change too much. Therefore, for each specified user we
can approximately model the bit rates of APs as square
waves. As Fig. 2 shows, we allow nonuniform AP
deployments along any user’s driving trajectory which
include effective ranges, neighbor distances, and effective
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bit rates. We then divide these regions into nonoverlapping
Equivalence Classes as Eq1; Eq2; . . . ; Eqn. Each Eqi denotes a
section of the roads, and within each section the candidate
AP set and corresponding effective bit rates will keep fixed
for the specified user.

3.2 Performance Metrics

We consider two performance metrics in this study:
efficiency and fairness. Efficiency is measured with the
overall throughput received by all users, and fairness is to
regulate the association control so that all users have a fair
distribution of bandwidth as much as possible.

For efficiency, we aim to maximize the overall through-

put for all vehicular users. The throughput for any user is

the average message delivery rate during the user’s service

period and it is usually measured in bits per second. Hence

for any user j, given the service duration ½tj; tj þ Tj� and the

allocated bandwidth bjðtÞ at time t 2 ½tj; tj þ Tj�, we can

express the throughput Bj for user j as Bj ¼ 1
Tj

R tjþTj
tj

bjðtÞdt.
Consider the overall time interval ½0; T �, during intervals

½0; tj� and ½tj þ Tj; T �, we actually have bjðtÞ ¼ 0, thus we

have an equivalent uniform notion as Bj ¼ 1
Tj

R T
0 bjðtÞdt.

Association control without considering fairness may

lead to the starvation of users with poor signal strength. To

consider fairness, two metrics are used frequently in

literature: max-min fairness [4] and proportional fairness

[5]. Suppose the throughput allocation for all n users can

be denoted as a vector ~B ¼ hB1; B2; . . . ; Bni. For max-min

fairness, an allocation ~B is “max-min fair” if and only if an

increase of any throughput within the domain of feasible

allocations must be at the cost of a decrease of some

already smaller throughput. For proportional fairness, an

allocation ~B is “proportionally fair” if and only if, for any

other feasible allocation ~B0 ,
Pj~Bj

j¼1

B
0
j�Bj

Bj
� 0. In other words,

any change in the allocation must have a negative average

change. It has been proved that the unique proportionally

fair allocation can be obtained by maximizing Jð~BÞ ¼P
j lnðBjÞ over the set of feasible allocations [15].
Since all APs are deployed by the same organization, a

centralized control scheme is possible as proposed in [16].
Therefore based on the above models and assumptions,
assuming we are the service provider of the specified
region, we aim to build a centralized association control
system and our goal is to continuously construct optimized
assignments of APs to users as they are driving along the
roads, respectively, taking the efficiency and fairness
metrics into consideration. We consider both offline and

online settings of the optimization problem. In the offline
setting, we assume that we know the mobility patterns and
trajectories of vehicular users in advance, in other words,
we are given the candidate AP set AjðtÞ for each user j at
each time t 2 ½0; T � as part of the problem input. In the
online setting, each AjðtÞ is revealed only at time t, at which
time instant we have to instantaneously select an AP from
AjðtÞ to associate for each user j, without any knowledge of
the future sets Ajðt0Þ for t0 2 ½t; T �.

4 OVERALL OPTIMIZATION AND SNAPSHOT

SOLUTION

For the efficiency metric, with a set of vehicular users U on
the roads, the objective is to maximize

P
j2U wjBj, which

can be further denoted as

X
j2U

wj
Tj

Z T

0

bjðtÞdt: ð1Þ

Here wj denotes priority for different users, and it is a fixed
value for user j. Similarly, if we choose proportional
fairness as the metric, the optimization objective is to
maximize

P
j2U wj lnBj, which can be further denoted as

X
j2U

wj ln
1

Tj

Z T

0

bjðtÞdt
� �

: ð2Þ

The above two objectives are optimization metrics over
the duration of service period for all users. We use the term
“long-term” to denote the overall time interval the user gets
service. As we aim to continuously construct optimized
assignments of users to APs within this duration, we use
the term “snapshot” to denote the time instant within which
we have to make a decision about AP association for all
users. Thus, it is necessary for us to find solutions for each
snapshot to achieve the overall optimal performance.

4.1 Snapshot Optimization for Efficiency

We first prove a theorem.

Theorem 1. For the efficiency metric, it is sufficient to maximizeP
j2U

wj
Tj
bjðtÞ for each snapshot t to achieve the long-term

optimization goal.

The proof of Theorem 1 can be found in the supplemen-

tary material, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPDS.2011.17. Theorem 1 essentially tells us that

we can optimize for efficiency metric in each snapshot to

achieve overall performance. In the offline setting, we

already know Tj in the objective function. In the online

setting, we have to estimate Tj based on the user’s current

speed vjðtÞ. Suppose user j gives the driving trajectory to

the centralized server through devises like GPS. Knowing

the overall distance Sj and the distance sjðtÞ that user j has

traveled at time t, we can continuously estimate Tj for user j

at snapshot t using TjðtÞ ¼ Sj�sjðtÞ
vjðtÞ þ t. In case that the

vehicular user stops at traffic lights, we maintain a window

of speeds for recent k snapshots, and use the average speed

vjðtÞ to estimate TjðtÞ.
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To describe the constraints in this problem formulation
for each snapshot t, we formulate the association problem
into a linear program (LP) as proposed in [5]. We use a
fractional variable pi;jðtÞ to denote the fraction of time that
AP i devotes to user j. For each AP i and user j, if j is
associated with i, then pi;jðtÞ is a fraction between 0 and 1;
if user j is not associated with i, then the fraction is 0. Since
each user j is assigned to only one AP for the integral
solution, there is exactly one nonzero pi;jðtÞ for each i 2 A.
We can first relax this constraint and assume that one user
can associate with multiple APs for the fractional solution.
Then the bandwidth bjðtÞ allocated to each user j can be
depicted as bjðtÞ ¼

P
i2A ri;jðtÞpi;jðtÞ. Thus, we can obtain a

fractional solution from the following linear program
formulation:

maximize
X
j2U

wj
Tj
bjðtÞ; ð3Þ

subject to

8j 2 U bjðtÞ ¼
X
i2A

ri;jðtÞ � pi;jðtÞ; ð4Þ

8i 2 A
X
j2U

pi;jðtÞ � 1; ð5Þ

8j 2 U
X
i2A

pi;jðtÞ � 1; ð6Þ

8i 2 A; j 2 U 0 � pi;jðtÞ � 1; ð7Þ
8j 2 U bjðtÞ � C: ð8Þ

Constraint (4) defines bjðtÞ, the bandwidth allocated to user
j at time point t. Constraint (5) means that the overall
allocated time fraction of each AP i to all users cannot be
more than 1. Constraint (6) states that the overall allocated
time fraction of each user j that communicates with all APs
cannot be more than 1. Constraint (7) shows that the time
fraction is between 0 and 1. To ensure that every user is
able to maintain connectivity to the internet within the
service duration, (8) guarantees that every user has
a minimum bandwidth of C at any time t, where C is a
constant value for the lower bound. For the pure efficiency
goal we set C ¼ 0 by default.

For completeness, we describe briefly in the following how

to find the integral solution based on the fractional solution.

After we obtain pi;jðtÞ for each user-AP pair, we can further

calculate the fractional assignment xi;jðtÞ ¼ ri;jðtÞ�pi;jðtÞ
bjðtÞ , which

reflects the fraction of user j’s total bandwidth that it expects

to get from AP i. Apparently 0 � xi;jðtÞ � 1. We can view the

assignment as a bipartite graph. Then, the final integral

solution is a set of binary variables x̂i;jðtÞ for all user-AP pairs,

where x̂i;jðtÞ is equal to 1 if user j is associated with AP i and 0

otherwise. We use the rounding algorithm proposed by

Shmoy and Tardos [17] to calculate the integral solution

x̂i;jðtÞ. Readers can refer to [5] for detailed description.
Since we have obtained the optimized strategy for

association control over each snapshot, we need to consider
the handoff strategy for efficiency. Continuously, comput-
ing the optimized association solution for each snapshot is
definitely not an appropriate solution, as it incurs too much
computing and communication cost. Without loss of

generality, we assume that the boundaries of an AP’s
effective range will not coincide with the others. Fig. 3
shows an example of the vehicular scenario, where a set of
users U1; U2; . . . ; Un are driving through various Equivalence
Classes over the time span ½0; T �. As the time intervals for
each user to drive through the Equivalence Classes may
overlap with each other, hence for ease of analysis we can
further divide the overall time span ½0; T � into smaller time
intervals according to the boundaries of Equivalence Classes
over the time span. We denote these time intervals as
½T 00; T 01�; ½T 01; T 02�; . . . ; ½T 0L�1; T

0
L�, where T 00 ¼ 0 and T 0L ¼ T . We

rely on the following theorem to devise an efficient handoff
strategy for efficiency metric.

Theorem 2. For optimal association control to maximize the
efficiency metric, handoffs to new association solutions for users
only happen when at least one user is crossing the boundaries of
Equivalence Classes. At each boundary the user will meet
with one of the following cases: 1) new candidate AP is detected;
2) original optimal AP is lost; and 3) original candidate AP is
lost. For cases 1) and 2), new association control is necessary.
For case 3), new association control is not needed, so the original
optimized solution holds.

The proof of Theorem 2 can be found in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.17. According to Theorem 2, for the
efficiency metric we only have to compute the optimized
association solution each time when one or more users cross
the boundary of Equivalence Classes. We can further prevent
unnecessary computation by checking the special patterns
of adjacent Equivalence Classes.

4.2 Online Algorithm for Proportional Fairness

In the above section, we have demonstrated that for the
efficiency metric we can transform the long-term overall
optimization into the snapshot optimization. However, for
proportional fairness, as each snapshot decision for the
optimal solution may depend on its former and future
situations, we cannot simply conduct this transformation.

We know that the exact optimal solution can only be
achieved with information obtained over the whole time
span ½0; T � in advance. However, in practice we cannot
precisely know the users’ future mobility trajectory, thus no
information about which users will be contending for
specified APs in the future can be obtained beforehand. In
this section, according to the online setting described in the
end of Section 3, we design an online algorithm. Our
solution relies on the following theorem.
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Theorem 3. Maximizing the long-term objective function

X
j2U

wj ln �þ
Z T

0

bjðtÞdt
� �

; ð9Þ

is consistent with maximizing the long-term objective function

Z T

0

X
j2U

wj

�þ
R t

0 bjðtÞdt
bjðtÞdt:

Here,
R t

0 bjðtÞdt denotes the accumulated bandwidth in time
span ½0; t�, wj denotes the original fixed weight as priority for
each user j, and � > 0 is a small constant number.

The proof of Theorem 3 can be found in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.17. Recall that the original long-term
goal is to maximize

X
j2U

wj ln

Z T

0

bjðtÞdt
� �

: ð10Þ

The only difference between the above two objective
functions (9) and (10) is �, which may have an impact on
the corresponding optimal solution. However, as long as we
set � small enough (�! 0) in (9), the long-term goal in (9)
becomes very near to

P
j2U wj lnð

R T
0 bjðtÞdtÞ.

In order to maximize

fO ¼
Z T

0

X
j2U

wj

�þ
R t

0 bjðtÞdt
bjðtÞdt;

we use the following heuristic snapshot objective

f 0OðtÞ ¼
X
j2U

wj

�þ
R t

0 bjðtÞdt
bjðtÞ;

along with the constraint depicted in (4)-(8) to approx-
imate the long-term optimization solution. The intuition is
that maximizing f 0OðtÞ at each t contributes to the
maximization of fO. We thus propose an algorithm based
on the dynamic weight

WjðtÞ ¼
wj

�þ
R t

0 bjðtÞdt
:

Since it is possible that
R t

0 bjðtÞdt ¼ 0, we let � > 0 to prevent
WjðtÞ from equal to þ1. This online algorithm called
Dynamic Weight based Online Algorithm (DWOA) is
illustrated in Algorithm 1. Here, Line 3 takes care of the
fairness metric by setting WjðtÞ inversely proportional to the
accumulated bandwidth. Line 4 considers the efficiency
metric by attempting to maximize the sum of the weighted
bandwidths. We update the association solution for every
�t time interval. Conventionally the less �t we use, the
better solution we can obtain, but the drawback is that it
may cause too many handoffs. In the supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.17, we further provide the performance analysis
of DWOA and introduce the offline optimization for
proportional fairness.

4.3 Online Algorithm for Max-Min Fairness

Since max-min fairness is also a frequently used metric for

fairness, for completeness, in this section we consider the

approach to achieve long-term max-min fairness. The

intuition of max-min fairness for the Drive-thru Internet

scenario is to maximize the throughput allocated to those

users that receive the minimum throughput. As it has been

proved by Bejerano et al. [4] that the problem of finding a

max-min fair integral association is NP-hard, thus we

consider an online algorithm to approximately achieve the

max-min fairness.
Assume at each snapshot t, each user j has his

accumulated bandwidth
R t

0 bjðtÞdt and current service

duration TjðtÞ. We define a user j to be saturated whenP
i2A pi;j ¼ 1 or 8i 2 Aj;

P
j02U pi;j0 ¼ 1. In other words, a

user j is saturated only when j has used all his time fraction

to connect to APs or no remaining time fraction of his

candidate APs can be further allocated to j. Algorithm 2

illustrates the online algorithm to achieve long-term max-

min fairness. We update the association solution for every

�t time interval. For each snapshot t, we sort the users

according to nondecreasing order of

yj ¼
R t

0 bjðtÞdt
wj � TjðtÞ

;

which is the current allocated throughput normalized by

the weight, and we denote the reordered users as

1; 2; . . . ; j; . . . :; n. Then we try to allocate fractional resource

pi;jðtÞði 2 AÞ to each user j in a progressive filling approach.

We start from user 1 and try to allocate resource to user 1 as

much as possible until

y01 ¼
R t

0 b1ðtÞdtþ
P

i2A ri;jðtÞ � pi;jðtÞ ��t
w1 � T1ðtÞ

¼ y2

or user 1 is saturated with available resources. We further

allocate resource to user 1 (if user 1 is not yet saturated,

otherwise we stop allocation for user 1) and user 2 as much

as possible until any of the users is saturated or

y01 ¼ y02 ¼ y3. We continue this progressive filling procedure

until all available resources have been allocated or all of the

users are saturated. For each round we use parameter J to

denote the indices for the involved users 1; 2; . . . ; J in

progressive filling.
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Algorithm 3 is the optimized allocation algorithm for each
progressive filling round. During each round we utilize the
linear program LP(U 0) to iteratively determine the saturated
users while trying to maximize the throughput of these
saturated users, as shown in the following formulation:

maximize y; ð11Þ

subject to

8j 2 U 0 yj ¼
R t

0 bjðtÞdtþ
P

i2A ri;jðtÞ � p0i;jðtÞ ��t
wj � ðTjðtÞ þ�tÞ

8j 2 U 0 yj � y; ð12Þ

8j 2 U 0 yj �
R t

0 bJðtÞdt
wj � ðTJðtÞ þ�tÞ ; ð13Þ

8i 2 A
X
j2U
ðpi;jðtÞ þ p0i;jðtÞÞ � 1; ð14Þ

8j 2 U 0
X
i2A
ðpi;jðtÞ þ p0i;jðtÞÞ � 1; ð15Þ

8i 2 A; j 2 U 0 0 � pi;jðtÞ þ p0i;jðtÞ � 1: ð16Þ

In the linear programming LP(U 0), U 0 denotes the non-
saturated user set, we, respectively, use p0i;jðtÞ and pi;jðtÞ to
denote the new allocated time fraction and the already
allocated time fraction. The objective is to maximize y,
which is the minimum value of yj for each user j inside the
nonsaturated user set U 0. Constraint (12) depicts that y is the
minimum value of yj. Constraint (13) depicts that yj should
not be allocated more than the value of

R t
0 bJðtÞdt

wj � ðTJðtÞ þ�tÞ ;

since we are considering the progressive filling approach
for users in 1; 2; . . . ; J for each round. Constraint (14) means
that the overall allocated time fraction of each AP i to all
users cannot be more than 1. Constraint (15) states that the

overall allocated time fraction of each user j that commu-
nicates with all APs cannot be more than 1. Constraint (16)
shows that the time fraction is between 0 and 1.

In each iteration of Algorithm 3, we attempt to determine
the optimal allocations for the users which are still non-
saturated, and check current users if they are already
saturated according to the definition. Then we remove the
saturated users from the target set U 0. In this way we achieve
the “max-min fair” allocation in an approximate approach by
using the progressive filling method.

In the supplementary material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.17, we further
introduce the group-based methodology to reduce associa-
tion control complexity, and discuss the practical utilization
in realistic settings.

5 PERFORMANCE EVALUATIONS

We have implemented a simulator to simulate the Drive-
thru Internet scenario. In order to simulate the realistic
settings about the road topologies and the vehicles’ moving
traces, we use the realistic traffic generator Simulation of
Urban MObility (SUMO) [18] to construct the large road
network and generate vehicle traffic. In the simulation, we
build the road topologies based on the road networks in a
rectangular region (3,500 m � 3,000 m) in Washington DC.,
which is imported from the TIGER database [19]. We build
the roads with lanes, and the number of lanes of each road
ranges from 1 to 6. Hence, the major roads take the majority
of traffic flow as there are more lanes on the major roads than
the other roads. Traffic lights are deployed at the cross of
roads. We generate vehicle traffics over the road networks
according to the parameters illustrated in Table 1, where
accel and decel, respectively, denote the acceleration and
deceleration ability of vehicles, sigma denotes the driver
imperfection (between 0 and 1), length and speed, respec-
tively, denote the vehicle length and average speed, density
denotes the average density of vehicles on the roads. The
average speed speed ¼ 15 m=s and we observe that the
95 percent confidence interval for vehicles’ speed is
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ð5 m=s; 20 m=sÞ. We simulate 500 various routes over the
road network for the vehicles, for each route we randomly
pick the origin position and the destination position and
hence specify the trip for the route. We use depart to denote
the time at which the vehicles are emitted into the network,
and we use period to denote the average time interval after
which another vehicular user with the same route shall be
emitted and repno to denote the number of vehicles to emit
which share the same route. We use random seeds to
generate the time intervals between emitted vehicles with
the same route. As we set period ¼ 30 s, thus on average
every 30 s the vehicles are emitted, and we set the 95 percent
confidence interval of the time interval as ð20 s; 40 sÞ.
Therefore, the application scenario involves about 50,000
vehicular users and lasts about 50 minutes. According to the
above settings, the average density density ¼ 22 users/km,
i.e., the average number of vehicles per kilometer of road is
22. We observe that the 95 percent confidence interval for the
density is (14 users/km, 60 users/km).

We conduct the performance evaluation based on the
settings of large road network and vehicle traffic generated
by SUMO. We randomly place the APs inside the specified
region and adopt the experiment results from [1] to
simulate the effective bit rates of APs. We set their peak
bit rates within the range from 4,000 to 5,000 kbps for
vehicular users. To sufficiently evaluate the performance of
various association control strategies, we consider two
kinds of situations for AP deployment: the dense AP
deployment and the sparse AP deployment. For the dense
AP deployment, we randomly deploy 500 APs and make
sure that at any location of the roads the user is within
effective range of at least one AP. For the sparse AP
deployment, we randomly deploy 150 APs and the user is
not guaranteed within the effective range of at least one AP

at any location of the roads. In the following part, we
conduct the performance evaluation to show how the
optimal solutions work under the two different situations.
To obtain each simulation result, we take the average value
of 50 simulation runs. In the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.17,
we illustrate more detail simulation results in a compre-
hensive approach.

5.1 Efficiency and Fairness

In this section, we evaluate the performance in terms of
efficiency and fairness. In order to illustrate the perfor-
mance gains of our optimized solutions, we compare with
two heuristic strategies. The first strategy is Strongest Signal
First, which always associates a user with the AP yielding
the strongest received signal strength at all times. The
second strategy is Connect Until Broken, which maintains a
connection with a user and an AP until the user considers
the link to be broken. Upon disconnection, the user will be
associated with a new AP which yields the largest signal
strength. When calculating the optimized solution, we solve
the linear program and convex program using MATLAB. In
the rest of this paper, we use the abbreviations as shown in
Table 2 to denote the specified solutions. For the ease of
comparison, we set wj ¼ 1 for each user. We set � ¼ 1 kbits
for OPT-PF(online), and, respectively, set C ¼ 200 kbps and
C ¼ 0 kbps in the dense AP situation and sparse AP
situation for both OPT-E(offline) and OPT-E(online).

Fig. 4a depicts the total throughput of all users achieved
by various solutions. As in each run of simulation the
generated traffic mobility has some variances, in order to
show the statistical performance results, so we provide the
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Parameters for Generating Vehicle Traffics

TABLE 2
Abbreviations

Fig. 4. Simulation results for efficiency and fairness. (a) Total throughput (kbps) for all users. (b) Per-user throughput comparison with dense AP
deployment.



90 percent confidence interval for the total throughput.
Note that in both the dense AP situation and sparse AP
situation, OPT-E(offline) achieves the largest overall
throughput, while CUB achieves the smallest throughput.
Due to some nonpredictable issues, OPT-E(online) achieves
a little smaller value for the overall throughput than OPT-
E(offline). All solutions in the sparse AP situation achieves a
fairly smaller overall throughput compared to the dense AP
situation, as fewer APs are available for association to
provide sufficient throughput for users. We observed that
in both situations the optimized solutions outperform the
two heuristic solutions. In the dense AP situation OPT-
E(online), respectively, achieves 72.9 and 122.9 percent more
throughput than SSF and CUB, while in the sparse AP
situation OPT-E(online), respectively, achieves 30.6 and 73.7
percent more throughput than SSF and CUB. Since users
have more candidate APs to associate with in the dense AP
situation, there exist more opportunities for an optimized
solution to achieve more performance gains.

In order to show the performance comparison in terms of
fairness, Fig. 4b illustrates per-user throughput comparison
in the dense AP situation. TheX-axis is the user index and the
Y -axis is users’ throughput in kbps. The users are sorted by
their throughput in increasing order. The throughput of the
user with the same x index actually indicates the average
throughput of the xth lowest throughput user (users
allocated the xth lowest bandwidth). In the dense AP
situation, we observe that the optimized solutions OPT-
E(online), OPT-PF(offline), OPT-PF(online) and OPT-MM all
outperform the two heuristic solutions SSF and CUB. For
instance, the median indexed user’s bandwidth value of
OPT-E(online) is, respectively, 64 percent higher than SSF and
181 percent higher than CUB. OPT-PF(offline), OPT-PF(online)
and OPT-MM have better performance in fairness than OPT-
E(online), since the users with lower indices have higher
throughput in OPT-PF(offline), OPT-PF(online) and OPT-MM
compared to OPT-E(online). Among the three solutions, OPT-
MM achieves the best performance in fairness, as the users
with lower indices are higher than all the other solutions,
inferring that more fairness is achieved among the users. The
performance gains of the above optimized solutions are
between 200 and 400 kbps in throughput for each user.

6 CONCLUSION

In this paper, we conduct a theoretical study on association
control over the Drive-thru Internet scenario. We, respec-
tively, consider efficiency and fairness as the optimization
metrics. Due to issues concerning both technology and
privacy, the data needed to compute the optimal solutions
are currently not easy to gather. Hence, our present research
work intends to be a theoretical effort to determine the
upper bounds to what can be achieved in reality.
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